
 

 

1 

 

 
   

 
 

Design Manual 

 

 ALVN 

Autonomous LiDAR and 

Vision based Navigator 

By 

Ciaran Maye 

C00253212 

 



 

 

2 

 

Table of Contents 

TABLE OF CONTENTS 2 

TABLE OF FIGURES 2 

INTRODUCTION 3 

ARCHITECTURE 3 

COMPONENTS 4 

Hardware 4 

Software 4 

USER INTERFACE 5 

Application Navigation Sequence 5 
Initialization 5 
Menu 5 
Error Handling 6 

DIAGRAMS 7 

Class Diagram 7 

State Diagram 8 

Sequence Diagrams 9 

3D PRINTED RPLIDAR MOUNT 11 

 

Table of Figures 
Figure 1 : Class Diagram .............................................................................................................................................. 7 
Figure 2 : State Diagram for Path Following and Obstacle Avoidance ............................................................................ 8 
Figure 3 : Sequence Diagram for Path Follower ............................................................................................................ 9 
Figure 4 : Sequence Diagram for Obstacle Avoider ..................................................................................................... 10 
Figure 5: 3D Model 1 ................................................................................................................................................ 11 
Figure 6: 3D Model 2 ................................................................................................................................................ 11 



 

 

3 

 

 

Introduction 
This project aims to develop a system for a vehicle to autonomously detect a 

'Guideline' and its surroundings and navigate them accordingly. The system uses a 

Sunfounder PiCar-V, Slamtec RPLidar A2M8 sensor, and a 1080p webcam to develop 

an 'Obstacle Avoidance System' using image processing, edge/line detection, and 

LiDAR spatial mapping. 

 

Architecture 
The architecture of this project can be described as a modular and object-oriented 

design, consisting of several interconnected classes representing different 

functionalities within the autonomous vehicle system. The central class, ALVN, 

composes the other modules, including LaneFollower, ObstacleAvoider, and 

PathFollower, and interacts with the hardware components through SunFounder 

PiCar-V SDK classes. 

 

The project leverages the capabilities of the Sunfounder PiCar-V, Slamtec RPLidar 

A2M8 sensor, and a 1080p webcam to gather data from the environment. The 

software is written in Python and utilizes the Sunfounder PiCar-V SDK and RPLidar 

Python library to interact with the hardware components. 

 

The project's architecture can be broken down as follows: 

 

ALVN class.  

This is the main class that initializes and manages all other components, both hardware 

and software. It establishes the composition relationship with the LaneFollower, 

ObstacleAvoider, and PathFollower modules and uses the SunFounder_PCA9685, 

SunFounder_PiCar_V_Front_Wheels, and SunFounder_PiCar_V_Back_Wheels classes 

to interact with the hardware. 

 



 

 

4 

 

 

 

PathFollower class. 

This module focuses on following a single line using image processing techniques. It 

also calculates the steering angle and sends commands to the ALVN class to control the 

vehicle's movement. 

 

ObstacleAvoider class. 

This module is responsible for obstacle detection and avoidance using data from the 

RPLidar A2M8 sensor. It processes the LiDAR data to identify obstacles, calculates the 

appropriate steering angle, and sends commands to the ALVN class to control the 

vehicle's movement. 

 

Components 

Hardware 

Sunfounder PiCar-V kit for Raspberry Pi 3 

Slamtec RPLidar A2M8 sensor 

120° wide angle camera 

 

Software 
Raspbian operating system 

Python 3.10 

Sunfounder PiCar-V SDK 

RPLidar Python library 

OpenCV Python library 

 



 

 

5 

 

User Interface 
The user interface is a command-line menu-based system that allows the user to 

choose between different modes and control the vehicle. 

 

 

Application Navigation Sequence 

Initialization 
The components, including the camera, LiDAR, and motors, are initialized 

automatically through the ALVN class. 

 

Menu  
The user is presented with a menu with the following options: 

 

1. Follow a path. 

2. Avoid obstacles. 

3. Follow path and avoid obstacles 

4. Reset Hardware. 

5. Quit. 

 

The user chooses a mode, and the vehicle behaves as follows: 

 

Follow a path. 

The vehicle follows a single line and maintains its position as close as possible to it. 

 

Avoid obstacles. 

The menu presents a follow up question of which obstacle avoidance algorithm to use. 

The vehicle travels forward and avoids any obstacles in its path. 

 

 



 

 

6 

 

Follow path and avoid obstacles.  

The vehicle follows a single line while avoiding obstacles. 

 

Reset Hardware 

Reset all hardware to default positions. 

 

 

Error Handling  
The program relies on the command-line interface for displaying errors and 

incorporates multiple exception handling mechanisms. However, it is essential to 

remember that this is a proof of concept, and error handling is still under 

development. 

 

RPLidarException: The program handles RPLidarException by restarting the lidar 

device. If the device encounters an error such as "Incorrect descriptor starting bytes," 

it stops the lidar, disconnects it, waits for a short period, reconnects it, and starts the 

motor again before continuing. 

 

KeyboardInterrupt: If the user interrupts the program using a keyboard interrupt (e.g., 

pressing Ctrl+C), the program stops the car and exits gracefully. 

 

PortNotOpenError: In case the lidar device's serial port is not open, the program 

attempts to reconnect by stopping the lidar, disconnecting it, waiting for a brief period, 

reconnecting it, and starting the motor again. 

 

Generic Exception Handling: For any other unexpected exceptions, the program stops 

the car, displays the error message, and exits. This ensures that the program doesn't 

leave the car running in an unsafe state. 

 



 

 

7 

 

Diagrams 

Class Diagram 

 
Figure 1 : Class Diagram 

 

 

 

 

 

 



 

 

8 

 

State Diagram 

This following diagram depicts the different states that the vehicle can transition 

between during the menu options “Follow path and avoid obstacles” and “Follow lanes 

and avoid obstacles”. 

The vehicle starts in the Idle state, waiting for user input. From there, the user can 

choose to enter one of the states. If the Follow Path or Follow Lane states encounter 

an obstacle, they will transition to the Obstacle Detection state, where the vehicle will 

attempt to navigate around the obstacle. Once the obstacle is cleared, the vehicle will 

return to the original state it was in before encountering the obstacle. Finally, the user 

can choose to quit the program, which will transition the vehicle to the Shutdown 

state, where it will stop all movement and power off.  

 
Figure 2 : State Diagram for Path Following and Obstacle Avoidance 

  



 

 

9 

 

Sequence Diagrams 

 

 
Figure 3 : Sequence Diagram for Path Follower 



 

 

10 

 

 
Figure 4 : Sequence Diagram for Obstacle Avoider 

 

 

 

 

 

 



 

 

11 

 

3D printed RPLidar mount 

 
Figure 5: 3D Model 1 

 
Figure 6: 3D Model 2 


	Table of Contents
	Table of Figures
	Introduction
	Architecture
	Components
	Hardware
	Software

	User Interface
	Application Navigation Sequence
	Initialization
	Menu
	Error Handling


	Diagrams
	Class Diagram
	State Diagram
	Sequence Diagrams

	3D printed RPLidar mount

